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The problem of diffusion slip of a binary mixture of gas is considered on the basis of the 

Boltzmann equation. Functions of particle dis~ibution with vortices directed toward and 
away from the surface are assumed different. Solution of the kinematic equation for each 
of the distribution fuuctions is derived by expanding into series in Hermite-Chebyshev 

polynomials. A system of transport equations is obtained for an arbitrary law of gas par- 
ticle interaction. The obtained exact solution of that system is used for the derivation 
of a formula for the diffusion slip velocity, which is a generalization of the known Kra- 
mers-Kistemaker expression for that quantity. The substantial effect of the law of gas 
particle interaction with a wall on the slip velocity is shown. 

The known formula for diffusion slip velocity 

ma nf.l 
M,= ma+ mp * Ya = 72, + np 

was derived in [l] by evaluative computations on the assumption of diffusive reflection 
of particles from the surface. In this formula m, is the mass of particles of the a kind, 
na is the concentration, and D,@ is the coefficient of interdiffusion. The diffusion rate 

determined by this formula is substantially affected by the difference of molecular 
weights of constituent gases. and is only weakly dependent on the law of interaction bet- 
ween molecules. The additional term in formula (0.1). proportional to the difference of 

the effective cross sections of particle interaction was obtained in [2] by the method 
developed in [l]. This term determines the presence of finite slip velocity even in mix- 
tures of gases of the same molecular weight, whenever the laws of interaction are diferent. 

Solution of the kinetic equation with the model collision integral had shown [3 - 51, 
however, that the diffusion slip velocity does not conform to formula (0.1) throughout 
the region of parameter variation. The question of applicability of this formula remains 

open. 
The method of investigation of diffusion slip of gas based on the kinetic equation with 

the exact collision integral was developed in [6], where a formula for diffusion slip velo- 
city was derived in the case of diffusion reflection of molecules from the surface with 
the use of 13-moment approximation. However in the derivation of the distribution func- 
tion the use was made of the proposition already pointed out by Maxwell [rl] that in the 
surface vicinity the distribution function of molecules impinging on it does not differ 
from that in the volume of gas. The problem of diffusion slip in the case of arbitrary 
reflection of molecules from the surface was analyzed in [8], where the diffusion slip 
velocity was determined by the method of variations and a number of assumptions. The 
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effect of Knudsen layer was taken into account in the formula for the distribution func- 
tion by an additional term to the function applicable in the volume of gas. In the com- 
putation of diffusion velocity this additional term was taken in the form of expansion in 
moments over the whole velocity space. However, unlike in [6], only the first moment 
which determines momentum variations, was taken into account, while the momentum 
flux in the Knudsen layer was neglected. Actually, owing to the collision of molecules 
impinging on the surface with molecules reflected from it, volume functions are consi- 
derably distorted and this results in changes of momentum and momentum fluxes. The 
extension of results in [6 3 to the case of an arbitrary reflection of molecules from the 
surface should be considered the most significant result of 183, while its main shortcoming 
is the neglect of the momentum flux change in the Knudsen layer. 

1. Let us consider a binary gas mixture in a field of partial concentration gradient 

tangential to the wall. We locate the coordinate origin at the surface with the s-axis 

normal to it and the z-axis lying on it. 
Under stationary flow conditions the disaibution function can be determined by the 

kinetic equation with its right-hand part supplemented by boundary conditions in the 
form of concentrated sources 

(1.1) 

J = s dv,dQa( WY 6) w {f’fl’ - ffl) 

where J is the integral of elastic collisions, w = 27 - n1 is the relative velocity of 
colliding particles, 6 is the angle of dispersion, Q (w, 6) is the differential cross sec- 

tion of dispersion, and 6 (x) is the delta-function. We distinguish the molecules which 

move toward the surface from those leaving it, i.e. fa (v, F) = fOL+ (v, r) for v, > 0 

and fa (v, r) =fn- ( v, r) for z?, < 0. We represent each of these functions in the 
form of series in Hermite-Chebyshev polynomials 

ncl 
fa*(r, v, t) = - n=12v~a exp 

i 

(v - UfarJ2 
- 

4% I( l-2&+ (1.2) 

-$ (v* - U*t,*) v*tax - Qaz (2 ; a*aJ c’ - ma (v $faJS ,)I vTar = (G)“’ 
a a 

where ?’ is the temperature expressed in energy units, ukt,, is the mean velocity, ; 
4faz is the heat flux, VT~ is the thermal speed of particles, and okazz is the tensor 
of viscous stresses. The transport equations for uk,,, ok,,, and qfaz can be repre- 
sented in the form (see Appendix 1) 
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The system of transport equations (1.3), unlike in [6. 71, defines the behavior of the 
binary gas mixture with allowance for discontinuity of the distribution function produced 

by the effect of the surface on the system. As implied by the problem symmetry, by the 
method of derivation of system (l-3), and_ by the form of the latter, it is sufficient to take 
into consideration only &, &, and qzz, since all others are quantities of higher 
order with respect to parameter M = u,, T”~rn-“~ (( 1. Temperature variation pro- 
duced by the Joule heat in the Knudsen layer at M < 1 can also be neglected in the 
problem. 

In deriving (1.3) the expansion of the dis~ibution function was carried out close to 

partial Maxweilian values, which in the presence of viscous transport of momentum 
yields, as shown in [9]. a more detailed definition of the behavior of a gas mixture. At 
distances from the surface greater than the mean free path the quantities uiz, u&., and 

q’,z assume, owing to particle collisions, the values u,~, o,,. and qar which define the 
mixture in its volume. The quantities u&, a&, and q& which determine the discon- 
tinuity of dis~bution functions away from the surface, tend to zero, as will be shown be- 
low, so that in the velocity space the distribution function and its derivatives become 

continuous. Hence at considerable distances from the surface system (1.3) converts to 

the corresponding system of equations of the 13-moment approximation [ 101. 
It should be stressed that the method used for deriving system (1.3) is more flexible 

than the method used in [1111 because away from the surface the distribution function 
has no disc~tin~~. The analysis of system (l-3) and the comparison of its solution 

with known solutions in the case of conventional thermal slip of a simple gas show a 
good accuracy of the method used here [12]. 

Analytic expressions for the coefficients R,,, R,,,, Rarkk, ~,&l), Yap(‘), Yapt3)q 
Yapc4) and v,d5) obtained with the use of the Chapman-Cowling integrals are given 

in Appendix 1. 

2. Thus the problem of diffusion slip reduces to the solution of system (1.3). Using 
the two-way Laplace transformation, we obtain the following solution of this system : 

where uOfaz, aOfarr and gOflz are limit values of velocity, of the viscous stress ten- 
sor, and ot the heat flux, respectively. Expressions for h,, p.,* , h, 0,and una are given 
in Appendix 2. 

Let at some distance from the surface the system reach a stationary state defined by 
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the diffusion slip velocity of gas relative to the surface. It will be seen that the limit 

values ~ofaz, (TOfccrr and QOfaz are related by three conditions. The first condition 

which stipulates the decay of perturbations induced by the surface is of the form 

$ GaaVYcr + (u;: - u;) + (&V (ELpQLzz - c1&3pxz> = 0 (2.4) 
a 

The second condition determines the absence of a velocity gradient in the volumeof 

gas 
(V&o), = P-l (QLZ + o&r*> = 0 (2.5) 

The last condition which expresses the limit partial viscosity in terms of limit partial 
velocity is the consequence of the law of partial reflection of molecules from the sur- 
face(*) + 

ooaxz = K1 &/a + uoo + @oar - r&z> (ror + ppp-I) (2.6) 

wil = n,T (v$jhGL)-’ ~2, (2 - E,)-2, Tar = r(ML3 - &la) 

7 = 76 (n2mq3 I b I)-’ {2/&Y$ (n2map + Lpb,, ‘- 

4/2E.wr3 (n [&plJ1 &3n-2} 
qua = 4/2J-2~8~&3~ + bad, uoo = &M& -j- ppu,+) 

Formulas for gap and hap are given in Appendix 1. 

With the obtained formulas (2.4) - (2.6) which interrelate the limit values 
f 

o,&, 

uoaz and go%, it is possible to derive from (2.2) the diffusion slip velocity (for 5 + 
oe ). We have 

= - W,Wp(~cz + wP)-l(U,,w,-l + uUpwp-l)+ 
(2.7) 

u = uos, 

[(a - a)(%/, - uvP) - aD,~(y,~~)-~a,,Vy,l(1 + A,-‘)-’ - 

ah ~Y,Y~-~GJ'Y, (1 + A*)-l 

A* = Dorp (~~yp)Wq)-'W, + VV~>-~, a = -{y, + 

p-'Q@v,-l - p,w,-'>(W,-1 + wp-1)-l} 

3, Formula (2.7) is the most general definition of diffusion rate known in literature 

(see, e. g., Cl - 51) . It extends the corresponding formulas derived in [ 1 - 51 to the case 
of arbitrary interaction of particles between themselves and with the wall, The contri- 

bution of terms in (2.7) to the expression for diffusion velocity are different. 
To illustrate this aspect let us turn to system (1.3) considered earlier. In fact, in de- 

riving equations of transport by the method of moments, the allowance for the heat flux 
derivative in the second of Eqs. (1.3) corresponds to the total second approximation in 
the Chapman-Enskog method 1131. On the other hand, the presence in the fourth of 
Eqs. (1.3) of the tensor of viscous stresses corresponds to the third approximation. The 
first two terms in (2.7). as implied by the proof, are due to the taking into account in 
the fourth of Eqs. (1.3) of the viscous stress tensor, and must appear only in the third ap- 
proximation in the Chapman-Enskog method. The last term does not, however, vanish 

l ) The law of partial reflection of molecules from a wall is of the form 

far+(%, 0, 2) = ear r,” (% 2) + (i - “J r,-(- %, Q, Vz, 0,z) 

where f, is the Maxwellian partial distribution function and ea is the partial accommo- 
dation coefficient. 
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even in the second approximation, hence its analysis is of considerable interest. Let us 
represent it in the following form: 

y~D,,a,,(Vy,)ly,yp)-l(l + A&t + us (3.1) 

where only us corresponds to the second approximation in the Chapman-Enskog method, 
while the first term is absent in that approximation. It is, consequently, possible to repe- 
sent the diffusion slip velocity in the following form : 

u = n, = v Wz* Wp* A {(Wh’ - w;-‘) I/M,M, ty,~, + yp~p)-r+ (3.2) 

‘/zW--’ + wi-‘, [(Ma - M,) (y,M, + ypMp)-1 - 

6 ( v-q - 1/M,) (!!a vz + yp v/Mp)-‘1) ( D,panaVy,) (If AJ1 

A = v wa*wp* (vc + OG) [2 (ya I/M,w,* + yp Jngvp*)]-l 

w,l = pa JI’Ma Iv;-’ 

6-l = 1 - v~,M,(v/Mp - I/‘K) (Yp - ?/a) (j/a jarI + yp 1/Mp) 

The structure of formula (3.2) is similar to that of the expression for diffusion velocity 
obtained in [l, 21. In fact, if we set A = ana = 6 = 1 and IV,* = Wa*, we 
obtain the known Kramer-Kistemaker expression (0.1). The maximum deviation of una 
and 6 from unity does not exceed 10%. In the region of parameters where y, = yp 
and M, z Mp the quantity A is close to unity. The presence in (3.2) of the coef- 
ficient A, is the consequence of taking into account of the dynamics of particle col- 
lision between themselves and with the wall. 

For an arbitrary interaction between particles themselves and with the surface, the con- 
dition W,* z wp* is satisfied approximately. Taking this into consideration, for- 

mula (3.2) for Y, < yp can be expressed as follows : 

u, = Ai3*a,DapVy,, A = _!- 
2 [‘+ &)“J 

1 (1 + A*)-l a,,, 

(3.3) 

For Y&/p-’ < 1 , formula (3.3) for diffusion velocity differs from the corresponding 
expression in [S] which was obtained on the basis of the kinetic equation with the model 
collision integral and coefficient A 6+ which is equal unity throughout the region of 
parameter variation. 

To compare these results with those in [8] we adduce the formula for cU derived there 
on the basis of Boltzmann’s equation 

au=+ l--22+ 
L 

M .M, 

MP r/ I Mp 

It will be seen that the formula in [8] differs from (3.3) not only by the absence of 
coefficient Ah*, but also by the expression for a,. This is because in [8], unlike in 

this investigation and in [S], the variation of viscous transport of momentum across the 
Knudsen layer was neglected in the analysis of the diffusion slip in a binary mixture. 
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Let us consider a mixture of gases of nearly the same masses and similar laws of mo- 
lecular interaction. In that case Wa*-l - Wa*-’ is defined by 

W-CL *-i - W,*-‘> = W*-i{[B fcr, - op)(crcx + Q-1 + (3.4) 

; ea [ 2@ - E,)-2 + Eb2(2 - &B)-~] c (Mp - kf,) - 

1&p2(2 - EP)-~ - Ea2(2 - &,)-21} 

W,” = w,* zzz w* for m, = mg, (T, = up, E, = EP = 1 

where o, is the molecule cross section, and expressions for B and C are given in Ap- 
pendix 3. Thus the first term in (3.2) for the diffusion velocity with allowance for (3.4) 
is the consequence of the difference in the laws of interaction of particles of different 
varieties. In the particular case of reflection of molecules from a wall the correspond- 

ing term was obtained by Brock [Z]. The second term in (3.4) reflects the systematic 

allowance for the dynamics of collision of particles between themselves. Of the great- 
est interest is the third term in (3.4) which is due to the difference in the laws of par- 
ticle interaction with the surface. It determines the appearance of finite diffusion slip 
velocity in a binary mixture of gases with mechanically equivalent molecules but sub- 

ject to different laws of molecule interaction with a wall. 
It should be pointed out that formula(2.7) which is a general expression for the mag- 

nitude of diffusion slip, represents one of the fundamental results of the present investi- 
gation. It is derived on the basis of Boltzmann’s equation and differs from the correspon- 
ding formula in [8] by the systematic taking into account not only of the dynamics of 

particle collision in the Knudsen layer, but also of the momentum flux in that layer. 
In the second approximation the quantity of diffusion slip extends the formulas of [l - 51 
to the case of arbitrary interaction between particles themselves and with the surface. 

In the related parameter region formula (3.2) yields, as previously indicated, the results 
obtained in 11, 21. 

As previously indicated, the allowance for the heat flux gradient in the second of Eqs. 

(1.3) in the derivation of equations of transport (1.3) corresponds to the complete second 
approximation in the Chapman-Enskog method, while the allowance for the derivative 
of the viscous stress tensor in the fourth of Eqs. (1.3) corresponds to the third approxima- 
tion. System (1.3) is characterized by two length scales: the hydrodynamic scale rela- 
ted to gradients of macroscopic quantities and applied along the surface, and the scale 
determined by the decrease of the wall effect which is proportional to the mean free 
path. Since the transport equation (1.3) represents a linear system with respect to the 
unknown functions, it is possible to maintain that the contribution of successive appro- 

ximations related to gradients of hydrodynamic quantities along the surface is small in 
comparison with the terms that are taken into account [14]. However, this cannot be 
said about the gradients of ZL*,~, ofarz and Q+~* across the Knudsen layer, since the _ 
ratio of the mean free path to the characteristic scale of variation of these quantities is 
far from small. Owing to the approximation of distribution functions by a limited num- 
ber of terms, the effect of gradients of indicated quantities across the Knudsen layer in 

subsequent approximations remains obscure. The latter is the main shortcoming of the 
method of moments. One of the effective means of its elimination is apparently provi- 
ded by the analysis of boundary conditions of slip with the use of the method of match- 
ing external and internal asymptotic expansions [ 151. 
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In conclusion the author thanks V.V,Struminskii for his interest in this paper. 
Appendix 1. Substituting the dis~ibution function (1.2) into the kinetic equation 

(1.1) and using the theory of parameter-dependent integrals flG], after some simple but 
cumbersome computations, we obtain the system of transport equations (1.3) in which 

y$ y$, yl;?p), Y$, vC5) R R ‘Ia az7 axz and Razkir are defined as follows: 

$; zzz .(Q + &P(l) + &Y(J) (‘zl$ - ‘bfa), 6v$ .-: !$$,fj’) + za$J) 

v(1) _ 
2i 

p&l' + g&J) + 2 (Q$m +- gp))] 

a,P 
a#@ 

where mep is the reduced mass and 

B(,i .= _ 
fl,ll,$ 

‘A [~~,,I1 ’ 
@A = - ?‘& 
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Appendix 2. In the derivation of solutions (2.1) - (2.3) we introduce with the 
use of formulas in Appendix 1 the following notation: 
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Appendix 3. In the investigation in the second approximation of the diffusion 
slip in a binary mixture of gases with mechanically equivalent molecules it is necessary 
to know the parameters B and C . These are defined by the following expressions: 

1 
To calculate the diffusion velocity of a binary mixture of gases with mechanically 

equivalent molecules in the third approximation it is necessary to know the following 

quantities : G, - 5r, It !la'l(,V!~a 

UYa + Qp r= ol!,l - '$,g) ~ 
~. _ 

Ga -}m ST* ' "!,a - u !,,3 - x:, 
1'l~llrJ~ 
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We consider a simple gasdynamic model of acceleration and compression of a 
plane material layer irradiated by a laser. We establish the conditions under 

which a limiting isentropic compression takes place, and investigate its stability. 

We also consider the problem of transfer of the laser radiation energy to the ac- 
celerated layer. 

A number of experimental and theoretical investigations (see e. g. [ 1 - 31) 
dealt with the problem cf transfer of the mechanical recoil impulse to the ma- 
terial target, the impulse resulting from the evaporation and hydrodynamic scat- 
tering of the material acted upon by the laser radiation. It is also known that at 

sufficiently high radiation flux densities, compression waves and in particular 
shock waves, appear in the nonvaporized material. It is clear that, if the amount 

of vaporized mass is comparable with the total mass of the target, then the non- 
vaporized part can be speeded up to velocities approaching that of the flow of 

the vaporized matter and, under certain conditions, compressed to the densities 
exceeding appreciably the density of the normal, condensed state. This effect 
of accelerating low-mass solid targets is of interest in connection with a general 
problem of accelerating small particles [4] to velocities of IO5 to 107 cm/set 
and higher. 

1. Let us consider a plane one-dimensional problem of the action of laser radiation 
with the flux density of q. , on a plane layer of condensed matter with the initial mass 
per unit area equal to M . The process of accelerating the layer is determined by the 

parameters of the material at the vaporization boundary separating the condensed and 
the gaseous phases, and for this reason the equations of motion must include the gasdyna- 
mic laws of conservation of mass flux, impulse and energy at this boundary. 

In accordance with [Z] , in the present case we have 


